满分5 > 高中数学试题 >

如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB, 过F点作⊙O的...

manfen5.com 满分网如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB,
过F点作⊙O的切线交AB的延长线于D、连接CF交AB于E点,
(1)求证:DE2=DB•DA;
(2)若⊙O的半径为manfen5.com 满分网,OB=manfen5.com 满分网OE,求EF的长.
(1)连接OF,利用切线的性质及角之间的互余关系得到DF=DE,再结合切割线定理即可证明DE2=DB•DA; (2)由圆中相交弦定理得CE•EF=AE•EB,结合直角三角形中边的关系,先求出AE和EB,从而求出EF的长. 【解析】 (1)连接OF, ∵DF切⊙O于F, ∴∠OFD=90°, ∴∠OFC+∠CFD=90°, ∵OC=OF, ∴∠OCF=∠OFC, ∵CO⊥AB于O, ∴∠OCF+∠CEO=90°, ∴∠CFD=∠CEO=∠DEF, ∴DF=DE, ∵DF是⊙O的切线, ∴DF2=DB•DA, ∴DE2=DB•DA; (2),CO=,, ∵CE•EF=AE•EB=(+2)(-2)=8, ∴EF=2
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x-alnx,manfen5.com 满分网
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若在[1,e](e=2.718…)上存在一点x,使得f(x)<g(x)成立,求a的取值范围.
查看答案
设函数f(x)=x3-x2-x+2.
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若当x∈[-1,2]时,-3≤af(x)+b≤3,求a-b的最大值.
查看答案
某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,…,以后逐年递增0.2万元.汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修费用为g(x),年平均费用为f(x).
(1)求出函数g(x),f(x)的解析式;
(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
查看答案
已知manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网=(cosx,2manfen5.com 满分网cosx-sinx),f(x)=manfen5.com 满分网manfen5.com 满分网+|manfen5.com 满分网|,x∈(manfen5.com 满分网,π].
(Ⅰ)求f(x)的最大值;
(Ⅱ)记△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=-1,a=c=2,求manfen5.com 满分网manfen5.com 满分网
查看答案
已知函数f(x)=log2x,设manfen5.com 满分网是首项和公差都等于1的等差数列.数列{bn}满足manfen5.com 满分网
(1)求数列{an}的通项公式,并证明数列{bn}不是等比数列;
(2)令manfen5.com 满分网,Sn=c1+c2+c3+…+cn,求证:Sn<3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.