满分5 > 高中数学试题 >

如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆的四个顶点,F为其右...

如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆manfen5.com 满分网的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为   
manfen5.com 满分网
解法一:可先直线A1B2的方程为,直线B1F的方程为,联立两直线的方程,解出点T的坐标,进而表示出中点M的坐标,代入椭圆的方程即可解出离心率的值; 解法二:对椭圆进行压缩变换,,,椭圆变为单位圆:x'2+y'2=1,F'(,0).根据题设条件求出直线B1T方程,直线直线B1T与x轴交点的横坐标就是该椭圆的离心率. 解法一:由题意,可得直线A1B2的方程为,直线B1F的方程为 两直线联立则点T(),则M(),由于此点在椭圆上,故有 ,整理得3a2-10ac-c2=0 即e2+10e-3=0,解得 故答案为 解法二:对椭圆进行压缩变换,,, 椭圆变为单位圆:x'2+y'2=1,F'(,0). 延长TO交圆O于N 易知直线A1B1斜率为1,TM=MO=ON=1,, 设T(x′,y′),则,y′=x′+1, 由割线定理:TB2×TA1=TM×TN , (负值舍去) 易知:B1(0,-1) 直线B1T方程: 令y′=0 ,即F横坐标 即原椭圆的离心率e=. 故答案:.
复制答案
考点分析:
相关试题推荐
设函数f(x)=manfen5.com 满分网(x>0),观察:f1(x)=f(x)=manfen5.com 满分网,f2(x)=f(f1(x))=manfen5.com 满分网,f3(x)=f(f2(x))=manfen5.com 满分网,…,根据以上事实,由归纳推理可得:当n∈N*且n≥2时,fn(x)=    查看答案
已知函数f(x)=manfen5.com 满分网,若f(3-2a2)>f(a),则实数a的取值范围是    查看答案
过点manfen5.com 满分网的直线l与圆C:(x-1)2+y2=4交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程为     查看答案
设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的夹角为120°,则实数k=    查看答案
设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cosC=manfen5.com 满分网,则sinB=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.