满分5 > 高中数学试题 >

已知函数的最小正周期为4π. (1)求f(x)的单调递增区间; (2)在△ABC...

已知函数manfen5.com 满分网的最小正周期为4π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
(1)通过两角和公式把f(x)化简成f(x)=sin(2ωx+),通过已知的最小正周期求出ω,得到f(x)的解析式.再通过正弦函数的单调性求出答案. (2)根据正弦定理及(2a-c)cosB=bcosC,求出cosB,进而求出B.得到A的范围.把A代入f(x)根据正弦函数的单调性,求出函数f(A)的取值范围. 【解析】 (1), ∵, ∴, ∴, ∴f(x)的单调递增区间为; (2)∵(2a-c)cosB=bcosC ∴2sinAcosB-sinCcosB=sinBcosC2sinAcosB=sin(B+C)=sinA ∴,∴ ∵,,∴ ∴.
复制答案
考点分析:
相关试题推荐
在等差数列{an}中,a1+a2+a3+…+a50=200,a51+a52+…+a100=2700,则a1=    查看答案
在△ABC中,O为中线AM上一个动点,若AM=2,则manfen5.com 满分网的最小值是    查看答案
设△ABC的内角A,B,C所对的边长分别为a,b,c且acosB-bcosA=manfen5.com 满分网c,则manfen5.com 满分网的值为    查看答案
(理科)定义在R上的函数f(x)满足f(x)=manfen5.com 满分网,则f(2013)的值为    查看答案
若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴的交点个数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.