(I)设等差数列{an}的公差为d,由题意建立方程组,求得d和a1,进而根据等差数列的通项公式和求和公式分别求得an及前n项和Sn.
(II)根据(I)中的an和b1,根据bn=(bn-bn-1)+(bn-1-bn-2)+…(b2-b1)+b1,进而求得bn,再利用裂项法求得.
【解析】
(I)设等差数列{an}的公差为d,
则
解得
∴an=2n+3.
(II)由bn+1-bn=an,∴bn-bn-1=an-1(n≥2,n∈N*).
当n≥2时bn=(bn-bn-1)+(bn-1-bn-2)+…(b2-b1)+b1
=an-1+an-2++a1+b1=(n-1)(n-1+4)+3
=n(n+2)
对b1=3也适合∴bn=n(n+2)(n∈N*)
∴.
=.