满分5 > 高中数学试题 >

已知函数f(x)=lnx,g(x)=x2-bx(b为常数). (1)函数f(x)...

已知函数f(x)=lnx,g(x)=manfen5.com 满分网x2-bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的取值范围.
(1)由f(x)求出其导函数,把切点的横坐标代入导函数中即可表示出切线的斜率,根据切点坐标和切线过原点写出切线方程,再和g(x)联立,利用根的判别求解即可. (2)通过求h′(x),结合函数h(x)在定义域上存在单调减区间,转化为存在性问题求b的取值范围. (3)要使得对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,即>,利用导数的几何是切线的斜率,得到对于区间[1,2]上的任意实数x,|f′(x)|>|g′(x)|,列出b的不等关系,从而得出b的取值范围. 【解析】 (1)f(x)=lnx得f′(x)=, 函数f(x)的图象在点(1,f(1))处的切线的斜率为f′(1)=1,切线方程为:y-0=x-1即y=x-1. 由已知得它与g(x)的图象相切,将y=x-1代入得x-1=x2-bx,即x2-(b+1)x+1=0, ∴△=(b+1)2-2=0,解得b=-1, 即实数b的值为-1. (2)h(x)=f(x)+g(x)=lnx+x2-bx, ∴h′(x)=+x-b, 根据函数h(x)在定义域(0,+∞)上存在单调减区间, ∴存在x>0,使得+x-b<0,即b>+x, 由于当x>0时,+x≥2, ∴b>2. ∴实数b 的取值范围(2,+∞). (3)对于区间[1,2]上的任意实数x,f′(x)=∈[,1]. g′(x)=x-b∈[1-b,2-b], 要使得对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立, 若用注意到f(x)是增函数,不妨设x1>x2,则f(x1)>f(x2),问题转化为|f(x1)-f(x2)|>|g(x1)-g(x2)| 等价于-f(x1)+f(x2)<g(x1)-g(x2)<f(x1)-f(x2)从而f(x1)-g(x1)>f(x2)-g(x2)且f(x1)+g(x1)>f(x2)+g(x2), 即f(x)-g(x)与f(x)+g(x)都是增函数, 利用导数的几何是切线的斜率,得到|f′(x)|>|g′(x)|, 即>|b-x|,于是x-≤b≤x+即(x-)max≤b≤(x+)min ∴≤b≤2. 则b的取值范围[,2].
复制答案
考点分析:
相关试题推荐
双曲线C与椭圆manfen5.com 满分网有相同的焦点,直线manfen5.com 满分网为C的一条渐近线.
(1)求双曲线C的方程;
(2)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当manfen5.com 满分网,且manfen5.com 满分网时,求Q点的坐标.
查看答案
设等比数列{an}的公比为q,前n项和Sn>0(n=1,2,…).
(Ⅰ)求q的取值范围;
(Ⅱ)设manfen5.com 满分网,记{bn}的前n项和为Tn,试比较Sn与Tn的大小.
查看答案
如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3
(Ⅰ)设点O是AB的中点,证明:OC∥平面A1B1C1
(Ⅱ)求二面角B-AC-A1的大小.

manfen5.com 满分网 查看答案
袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等.用ξ表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量ξ的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.
查看答案
在△ABC中,角A,B,c的对边分别是a、b、c,已知向量manfen5.com 满分网=(cosA,cos B),manfen5.com 满分网=(a,2c-b),且manfen5.com 满分网manfen5.com 满分网
(I)求角A的大小;
(II)若a=4,求△ABC面积的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.