满分5 > 高中数学试题 >

已知椭圆的中心在坐标原点,离心率为,一个焦点是F(0,1). (Ⅰ)求椭圆方程;...

已知椭圆的中心在坐标原点,离心率为manfen5.com 满分网,一个焦点是F(0,1).
(Ⅰ)求椭圆方程;
(Ⅱ)直线l过点F交椭圆于A、B两点,且manfen5.com 满分网,求直线l的方程.
(Ⅰ)设椭圆方程,确定几何量,即可得到椭圆方程; (Ⅱ)分类讨论,设出直线方程与椭圆方程联立,利用韦达定理及向量条件,即可求得直线方程. 【解析】 (Ⅰ)设椭圆方程为(a>b>0). 依题意,e==,c=1,∴a=2,b2=a2-c2=3, ∴所求椭圆方程为; (Ⅱ)若直线l的斜率k不存在,则不满足. 当直线l的斜率k存在时,设直线l的方程为y=kx+1. 因为直线l过椭圆的焦点F(0,1),所以k取任何实数,直线l与椭圆均有两个交点A、B. 设A(x1,y1),B(x2,y2), 联立方程消去y,得(3k2+4)x2+6kx-9=0. ∴x1+x2=,①x1•x2=,② 由F(0,1),A(x1,y1),B(x2,y2), 则, ∵,∴(-x1,1-y1)=2(x2,y2-1),得x1=-2x2. 将x1=-2x2代入①、②,得,③,④ 由③、④得,,化简得=, 解得,∴k=± ∴直线l的方程为:y=±x+1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx,g(x)=manfen5.com 满分网x2-bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的取值范围.
查看答案
双曲线C与椭圆manfen5.com 满分网有相同的焦点,直线manfen5.com 满分网为C的一条渐近线.
(1)求双曲线C的方程;
(2)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当manfen5.com 满分网,且manfen5.com 满分网时,求Q点的坐标.
查看答案
设等比数列{an}的公比为q,前n项和Sn>0(n=1,2,…).
(Ⅰ)求q的取值范围;
(Ⅱ)设manfen5.com 满分网,记{bn}的前n项和为Tn,试比较Sn与Tn的大小.
查看答案
如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3
(Ⅰ)设点O是AB的中点,证明:OC∥平面A1B1C1
(Ⅱ)求二面角B-AC-A1的大小.

manfen5.com 满分网 查看答案
袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等.用ξ表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量ξ的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.