①将a2-b2=1,分解变形为(a+1)(a-1)=b2,即可证明a-1<b,即a-b<1;②③可通过举反例的方法证明其错误性;④若a>b,去掉绝对值,将a3-b3=1分解变形为(a-1)(a2+1+a)=b3,即可证明a-b<1,同理当a<b时也可证明b-a<1,从而命题④正确
【解析】
①若a2-b2=1,则a2-1=b2,即(a+1)(a-1)=b2,∵a+1>a-1,∴a-1<b,即a-b<1,①正确;
②若,可取a=7,b=,则a-b>1,∴②错误;
③若,则可取a=9,b=4,而|a-b|=5>1,∴③错误;
④由|a3-b3|=1,
若a>b,则a3-b3=1,即a3-1=b3,即(a-1)(a2+1+a)=b3,∵a2+1+a>b2,∴a-1<b,即a-b<1
若a<b,则b3-a3=1,即b3-1=a3,即(b-1)(b2+1+b)=a3,∵b2+1+b>a2,∴b-1<a,即b-a<1
∴|a-b|<1∴④正确;
故答案为①④