满分5 > 高中数学试题 >

已知函数f(x)=ax2+ln(x+1). (1)当时,求函数f(x)的单调区间...

已知函数f(x)=ax2+ln(x+1).
(1)当manfen5.com 满分网时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(文)(Ⅲ)利用ln(x+1)≤x,求证:manfen5.com 满分网(其中n∈N*,e是自然对数的底数).
(Ⅲ)求证:manfen5.com 满分网(其中n∈N*,e是自然对数的底数).
(Ⅰ)求导函数,由导数的正负可得函数的单调区间; (Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,等价于ax2+ln(x+1)-x≤0恒成立,设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可,分类讨论,可求实数a的取值范围; (Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用裂项法,结合对数的运算法则,可证结论. (Ⅰ)【解析】 当时,(x>-1),(x>-1), 由f'(x)>0,解得-1<x<1,由f'(x)<0,解得x>1. 故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).(4分) (Ⅱ)【解析】 因当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.(5分) 由=, (ⅰ)当a=0时,,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.(6分) (ⅱ)当a>0时,由,因x∈[0,+∞),所以, ①若,即时,在区间(0,+∞)上,g'(x)>0,则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件; ②若,即时,函数g(x)在上单调递减,在区间上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.(8分) (ⅲ)当a<0时,由,∵x∈[0,+∞),∴2ax+(2a-1)<0, ∴g'(x)<0,故函数g(x)在[0,+∞)上单调递减,故g(x)≤g(0)=0成立. 综上所述,实数a的取值范围是(-∞,0].(10分) (Ⅲ)证明:据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立(11分) 又, ∵===, ∴.(14分)
复制答案
考点分析:
相关试题推荐
已知m>1,直线l:x-my-manfen5.com 满分网=0,椭圆C:manfen5.com 满分网+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
查看答案
设数列{an}的前n项的和manfen5.com 满分网,n∈N*
(1)求首项a1与通项an
(2)设manfen5.com 满分网,cn=tanbn•tanbn+1,求数列{cn}的前n项和Tn
查看答案
如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=manfen5.com 满分网,PB=2,E,F分别是BC,PC的中点
(1)证明:AD⊥平面DEF
(2)求二面角P-AD-B的余弦值.

manfen5.com 满分网 查看答案
某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100头猪,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100头猪的感染数,得到如下资料:
日  期4月1日4月2日4月3日4月4日4月5日
温  差101311127
感染数2332242917
(1)求这5天的平均感染数;
(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x-y|≥9的概率.
查看答案
某射手每次射击击中目标的概率是manfen5.com 满分网,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标.另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.