先证明必要性:若{an}是常数列,如果an≠0,可得数列{an}是等差数列,若{an}既是等差数列又是等比数列,根据等比数列和等差数列的性质进行求解;
【解析】
数列{an}为常数列,如果an=0,则数列{an}不是等比数列;
显然数列{an}是以a为首项,以0为公差的等差数列,且{an}是以a为首项,以1为公比的等比数列.
若{an}既是等差数列又是等比数列,则对任意n∈N*都有:
可得=anan+2,整理得(an-an+2)2=0,
∴an=an+2=an+1.
∴{an}是常数列.
∴“数列{an}既是等差数列又是等比数列”⇒数列{an}为常数列”
∴“数列{an}为常数列”是“数列{an}既是等差数列又是等比数列”的必要不充分条件,
故选B;