满分5 > 高中数学试题 >

已知函数f(x)=lnx, (1)当a=-2时,函数h(x)=f(x)-g(x)...

已知函数f(x)=lnx,manfen5.com 满分网
(1)当a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求实数b的取值范围;
(2)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的图象与x轴交于A(x1,0)、B(x2,0)两点(0<x1<x2),且线段AB的中点为C(x,0),函数V(x)的导函数为V′(x),求证:V′(x)≠0.
(1)求导函数,可得对任意x∈(0,+∞)恒成立,分离参数,求出函数的最值,即可求实数b的取值范围; (2)利用反证法,求导函数,利用V(x)的图象与x轴交于A(x1,0)、B(x2,0)两点(0<x1<x2),且线段AB的中点为C(x,0),从而可引出矛盾. (1)【解析】 由题意,h(x)=lnx+x2-bx, ∵函数h(x)=f(x)-g(x)在其定义域内是增函数, ∴对任意x∈(0,+∞)恒成立 分离参数可得, 所以…(4分) (2)证明:V(x)=2f(x)-x2-kx(k∈R),所以 令V′(x)=0,则由题意可得①;② x1+x2=2x③;=0④ 由①②得 由④得 所以,即⑤(8分) 令,则,所以 因此u(t)在(0,1)上是增函数, 所以u(t)<u(1)=0,即与⑤矛盾  因此假设不成立   故V'(x)≠0(12分)
复制答案
考点分析:
相关试题推荐
已知椭C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=manfen5.com 满分网上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.
查看答案
某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
查看答案
如图,四棱锥S-ABCD的底面ABCD是直角梯形,侧面SAB是等边三角形,DA⊥面SAB,DC∥AB,AB=2AD=2DC,O,E分别为AB、SD中点.
(1)求证:SO∥面AEC,BC⊥面AEC
(2)求二面角O-SD-B的余弦值.

manfen5.com 满分网 查看答案
在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(Ⅰ)若c=2,manfen5.com 满分网,且△ABC的面积manfen5.com 满分网,求a,b的值;
(Ⅱ)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.
查看答案
已知点P在曲线y=ex(e为自然对数的底数)上,点Q在曲线y=lnx上,则丨PQ丨的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.