满分5 > 高中数学试题 >

(选做题)已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集为M. ...

(选做题)已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集为M.
(1)求M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.
(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M; (Ⅱ)利用作差法,证明4(a+b)2-(4+ab)2<0,即可得到结论. (Ⅰ)【解析】 f(x)=|x+1|+|x-1|= 当x<-1时,由-2x<4,得-2<x<-1; 当-1≤x≤1时,f(x)=2<4; 当x>1时,由2x<4,得1<x<2. 所以M=(-2,2).…(5分) (Ⅱ)证明:当a,b∈M,即-2<a,b<2, ∵4(a+b)2-(4+ab)2=4(a2+2ab+b2)-(16+8ab+a2b2)=(a2-4)(4-b2)<0, ∴4(a+b)2<(4+ab)2, ∴2|a+b|<|4+ab|.…(10分)
复制答案
考点分析:
相关试题推荐
在直角坐标平面内,曲线C的参数方程为manfen5.com 满分网(α为参数),经过变换manfen5.com 满分网后曲线C变换为曲线C′
(1)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C′的极坐标方程;
(2)求证:直线manfen5.com 满分网与曲线C'的交点在曲线C上.
查看答案
manfen5.com 满分网如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.
查看答案
已知函数f(x)=lnx,manfen5.com 满分网
(1)当a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求实数b的取值范围;
(2)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的图象与x轴交于A(x1,0)、B(x2,0)两点(0<x1<x2),且线段AB的中点为C(x,0),函数V(x)的导函数为V′(x),求证:V′(x)≠0.
查看答案
已知椭C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=manfen5.com 满分网上动点P(x,y)(x-y≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.
查看答案
某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.