满分5 > 高中数学试题 >

已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线上. (I)若m...

已知m是非零实数,抛物线C:y2=2px(p>0)的焦点F在直线manfen5.com 满分网上.
(I)若m=2,求抛物线C的方程
(II)设直线l与抛物线C交于A、B,△AA2F,△BB1F的重心分别为G,H,求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外.

manfen5.com 满分网
(1)根据焦点F(,0)在直线l上,将F代入可得到ρ=m2,再由m=2可确定p的值,进而得到答案. (2)设A(x1,y1),B(x2,y2),然后联立消去x表示出两根之和、两根之积,然后设M1,M2分别为线段AA1,BB1的中点,根据重心的定义可得到关系2,进而得到G(),H(),和GH的中点坐标M,再由可得到关于m的关系式,然后表示出|MN|整理即可得证. 【解析】 (1)因为焦点F(,0)在直线l上, 得p=m2 又m=2,故p=4 所以抛物线C的方程为y2=8x (2)证明设A(x1,y1),B(x2,y2) 由消去x得 y2-2m3y-m4=0, 由于m≠0,故△=4m6+4m4>0, 且有y1+y2=2m3,y1y2=-m4, 设M1,M2分别为线段AA1,BB1的中点, 由于2, 可知G(),H(), 所以,, 所以GH的中点M. 设R是以线段GH为直径的圆的半径, 则 设抛物线的标准线与x轴交点N, 则 =m4(m4+8m2+4) =m4[(m2+1)(m2+4)+3m2] >m2(m2+1)(m2+4)=R2. 故N在以线段GH为直径的圆外.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网
(1)若f(x)在manfen5.com 满分网上存在单调递增区间,求a的取值范围.
(2)当0<a<2时,f(x)在[1,4]的最小值为manfen5.com 满分网,求f(x)在该区间上的最大值.
查看答案
如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=manfen5.com 满分网FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.
(Ⅰ)求二面角A′-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.

manfen5.com 满分网 查看答案
已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3.
(1)若a=1,求数列{an}的通项公式;
(2)若数列{an}唯一,求a的值.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足manfen5.com 满分网
(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的最大值.
查看答案
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.