满分5 > 高中数学试题 >

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,...

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且manfen5.com 满分网,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2.
(1)根据题意,可得2Sn=an+an2①与②成立,①-②得2an=an+an2-an-1-an-12,可以化简为an-an-1=1(n≥2),进而可得{an}是公差为1的等差数列,将n=1代入①中,可得a1=1,由等差数列的通项公式,可得答案; (2)由对数的性质,分析可得对任意x∈(1,e],有0<lnx<1,而an=n,则总有≤,用放缩法,可得,由裂项相消法,对右式求和可得证明. 【解析】 (1)根据题意,对于任意n∈N*,总有an,Sn,an2成等差数列,则对于n∈N*,总有2Sn=an+an2①成立 ∴(n≥2)② ①-②得2an=an+an2-an-1-an-12,即an+an-1=(an+an-1)(an-an-1); ∵an,an-1均为正数, ∴an-an-1=1(n≥2) ∴数列{an}是公差为1的等差数列, 又n=1时,2S1=a1+a12,解得a1=1 ∴an=n.(n∈N*) (2)证明:由(1)的结论,an=n;对任意实数x∈(1,e],有0<lnx<1, 对于任意正整数n,总有≤. ∴ = 对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)当a=0时,求f(x)的极值;
(2)若f(x)在区间manfen5.com 满分网上是增函数,求实数a的取值范围.
查看答案
袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2 的小球n个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是manfen5.com 满分网
(Ⅰ)求n的值;
(Ⅱ)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案
manfen5.com 满分网如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.manfen5.com 满分网,求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.
查看答案
设函数f(x)=msinx+cosx(x∈R)的图象经过点manfen5.com 满分网
(Ⅰ)求y=f(x)的解析式,并求函数的最小正周期和最值.
(Ⅱ)若manfen5.com 满分网,其中A是面积为manfen5.com 满分网的锐角△ABC的内角,且AB=2,求AC和BC的长.
查看答案
在等比数列{an}中,a3=4,a2+a4=10.
(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.