满分5 > 高中数学试题 >

已知函数. (1)讨论函数y=f(x)的单调区间; (2)设g(x)=x2-2b...

已知函数manfen5.com 满分网
(1)讨论函数y=f(x)的单调区间;
(2)设g(x)=x2-2bx+4-ln2,当a=1时,若对任意的x1,x2∈[1,e](e是自然对数的底数),f(x1)≥g(x2),求实数b的取值范围.
(1)求出导数f′(x),利用导数与函数单调性的关系解出不等式f′(x)>0,f′(x)<0即可. (2)由题意得,对任意的x1,x2∈[1,e](e是自然对数的底数),f(x1)≥g(x2)成立,可转化为当x∈[1,e]时,[f(x)]min≥[g(x)]max. 【解析】 (1)因为f(x)=x+,所以=, ①若a=0,f(x)=x,f(x)在(0,+∞)上单调递减. ②若a>0,当x∈(0,2a)时,f′(x)<0,f(x)在(0,2a)上单调递减;当x∈(2a,+∞)时,f′(x)>0,f(x)在(2a,+∞)上单调递增. ③若a<0,当x∈(0,-a)时,f′(x)<0,f(x)在(0,-a)上单调递减;当x∈(-a,+∞)时,f′(x)>0,f(x)在(-a,+∞)上单调递增. 综上:①当a=0时,f(x)在(0,+∞)上单调递增. ②当a>0时,f(x)在(0,2a)上单调递减,在(2a,+∞)上单调递增. ③当a<0时,f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增. (2)当a=1时,f(x)=x+. 由(1)知,若a=1,当x∈(0,2)时,f(x)单调递减,当x∈(2,+∞)时,f(x)单调递增, 所以f(x)min=f(2)=3-ln2. 因为对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立, 所以问题等价于对于任意x∈[1,e],f(x)min≥g(x)恒成立, 即3-ln2≥x2-2bx+4-ln2对于任意x∈[1,e]恒成立, 即2b对于任意x∈[1,e]恒成立, 因为函数y=的导数在[1,e]上恒成立, 所以函数y=x+在[1,e]上单调递增,所以, 所以2b,所以b, 故实数b的取值范围为[).
复制答案
考点分析:
相关试题推荐
已知椭圆E:manfen5.com 满分网的左顶点为A,左、右焦点分别为F1、F2,且圆C:manfen5.com 满分网过A,F2两点.
(1)求椭圆E的方程;
(2)设直线PF2的倾斜角为α,直线PF1的倾斜角为β,当β-α=manfen5.com 满分网时,证明:点P在一定圆上.
查看答案
在一个矩形体育馆的一角MAN内(如图所示),用长为a的围栏设置一个运动器材储存区域,已知B是墙角线AM上的一点,C是墙角线AN上的一点.
(1)若BC=a=10,求储存区域三角形ABC面积的最大值;
(2)若AB=AC=10,在折线MBCN内选一点D,使DB+DC=a=20,求储存区域四边形DBAC面积的最大值.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,且PA=AB=2,E为PD中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)证明:平面PCD⊥平面PAD.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,已知acosC-bcosC=ccosB-ccosA,且C=120°.
(1)求角A;
(2)若a=2,求c.
查看答案
已知a,b,c是正实数,且abc+a+c=b,设manfen5.com 满分网,则p的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.