满分5 > 高中数学试题 >

设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f...

设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f(manfen5.com 满分网)|对一切x∈R恒成立,则
①f(manfen5.com 满分网)=0;
②|f(manfen5.com 满分网)|<|f(manfen5.com 满分网)|;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+manfen5.com 满分网,kπ+manfen5.com 满分网](k∈Z);
⑤经过点(a,b)的所有直线均与函数f(x)的图象相交.
以上结论正确的是    (写出所有正确结论的编号).
化简f(x)的解析式,利用已知条件中的不等式恒成立,得f() 是三角函数的最大值,得到x= 是三角函数的对称轴,将其代入整体角令整体角等于kπ+,求出辅助角θ,再通过整体处理的思想研究函数的性质. 【解析】 ∵f(x)=asin2x+bcos2x=±sin(2x+θ) 由f(x)≤f()可得f()为函数f(x)的最大值 ∴2× ∴ ∴f(x)=asin2x+bcos2x=±sin(2x+) 对于①f()=sin(2×+)=0;故①对 对于②,|f()|=|sin(+)|= |f()|=|sin()|=|sin|= ∴|f()|>|f()|故②错 对于③,f(x)不是奇函数也不是偶函数,故③正确 对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对 对于⑤要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|>,b2>a2+b2这不可能,矛盾,故不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤正确 故答案为:①③⑤
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x,y),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x)=0.若函数f(x)=x3-3x2,则manfen5.com 满分网=    查看答案
设偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与x轴的交点,M为极小值点),∠KML=90°,KL=manfen5.com 满分网,则manfen5.com 满分网的值为   
manfen5.com 满分网 查看答案
设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)=    查看答案
已知函数manfen5.com 满分网,把函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,该数列的前n项的和Sn,则S10=( )
A.45
B.55
C.210-1
D.29-1
查看答案
动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是manfen5.com 满分网,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是( )
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.