满分5 > 高中数学试题 >

在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b. ...

在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.
(1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;
(2)求证:A1C1⊥AB;
(3)求点B1到平面ABC1的距离.

manfen5.com 满分网
(1)欲证EF∥平面ABC,关键在平面ABC内找一直线与EF平行,根据中位线可知EF∥A1C1而A1C1∥AC则EF∥AC; (2)欲证A1C1⊥AB,可先证A1C1⊥平面A1ABB1,根据线面垂直的判定定理可知只需证AB1⊥A1C1,A1C1⊥AA1; (3)过A1作A1G⊥AC1于点G,先证A1G⊥平面ABC1,从而得到A1G即为所求的距离,在三角形中求出该距离即可. (1)证明:∵E、F分别为AB1、BC1的中点, ∴EF∥A1C1.∵A1C1∥AC,∴EF∥AC. ∴EF∥平面ABC. (2)证明:∵AB=CC1,∴AB=BB1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形.连接A1B,则A1B⊥AB1. 又∵AB1⊥BC1,∴AB1⊥平面A1BC1. ∴AB1⊥A1C1. 又A1C1⊥AA1,∴A1C1⊥平面A1ABB1. ∴A1C1⊥AB. (3)【解析】 ∵A1B1∥AB,∴A1B1∥平面ABC1. ∴A1到平面ABC1的距离等于B1到平面ABC1的距离. 过A1作A1G⊥AC1于点G, ∵AB⊥平面ACC1A1, ∴AB⊥A1G.从而A1G⊥平面ABC1,故A1G即为所求的距离,即A1G=, ∴点B1到平面ABC1的距离.
复制答案
考点分析:
相关试题推荐
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
查看答案
如图正方形ABCD,ABEF的边长都是1,而且平面ABCD,ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<manfen5.com 满分网).
(1)求MN的长;
(2)当a为何值时,MN的长最小.

manfen5.com 满分网 查看答案
已知函数f(x)=Asin(ωx+manfen5.com 满分网)(其中x∈R,A>0,ω>0)的图象与x轴的交点中,相邻两个交点之间的距离为manfen5.com 满分网,且图象上一个点为M(manfen5.com 满分网,-2).
(1)求f(x)的解析式;
(2)若x∈[0,manfen5.com 满分网]求函数f(x)的值域;
(3)求函数y=f(x)的图象左移manfen5.com 满分网个单位后得到的函数解析式.
查看答案
如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D为C1B的中点,P为AB边上的动点.
(Ⅰ)当点P为AB的中点时,证明DP∥平面ACC1A1
(Ⅱ)若AP=3PB,求三棱锥B-CDP的体积.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网
(1)求tanα的值;
(2)求(sinα+cosα)2的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.