满分5 > 高中数学试题 >

已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,...

已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
(1)因为x=1时函数取得极值得f(x)=-3-c求出b,然后令导函数=0求出a即可; (2)解出导函数为0时x的值讨论x的取值范围时导函数的正负决定f(x)的单调区间; (3)不等式f(x)≥-2c2恒成立即f(x)的极小值≥-2c2,求出c的解集即可. 【解析】 (1)由题意知f(1)=-3-c,因此b-c=-3-c,从而b=-3 又对f(x)求导得=x3(4alnx+a+4b) 由题意f'(1)=0,因此a+4b=0,解得a=12 (2)由(I)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1 当0<x<1时,f'(x)<0,此时f(x)为减函数; 当x>1时,f'(x)>0,此时f(x)为增函数 因此f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1,+∞) (3)由(II)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值, 要使f(x)≥-2c2(x>0)恒成立,只需-3-c≥-2c2 即2c2-c-3≥0,从而(2c-3)(c+1)≥0,解得或c≤-1 所以c的取值范围为(-∞,-1]∪
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*
(1)若数列{an+c}成等比数列,求常数c值;
(2)求数列{an}的通项公式an
(3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案
有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法.
(1)求n的值;
(2)求随机变量ξ的概率分布列和数学期望.
查看答案
如图为一多面体,其底面ABCD为正方形,PD⊥平面ABCD,CE∥DP,且PD=2CE.
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB;
(3)若PD=manfen5.com 满分网AD,求平面PBE与平面ABCD所成的二面角的余弦值.

manfen5.com 满分网 查看答案
已知△ABC中,A、B、C分别为三个内角,a、b、c为所对边,2manfen5.com 满分网(sin2A-sin2C)=(a-b)sinB,△ABC的外接圆半径为manfen5.com 满分网
(1)求角C;
(2)求△ABC面积S的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.