满分5 > 高中数学试题 >

已知函数f(x)=x2-2ax+b,a,b∈R. (1)若a从集合{0,1,2,...

已知函数f(x)=x2-2ax+b,a,b∈R.
(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;
(2)若a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.
(1)先确定a、b取值的所有情况得到共有12种情况,又因为方程有两个不相等的根,所以根的判别式大于零得到a>b,而a>b占6种情况,所以方程f(x)=0有两个不相等实根的概率P=0.5;(2)由a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数得试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3},而方程f(x)=0没有实根构成的区域为M={(a,b)|0≤a≤2,0≤b≤3,a≤b},分别求出两个区域面积即可得到概率. 【解析】 (1)a取集合{0,1,2,3}中任一元素, b取集合{0,1,2}中任一元素 ∴a、b的取值情况有(0,0),(0,1)(0,2) (1,0)(1,1)(1,2)(2,0), (2,1),(2,2),(3,0)(3,1)(3,2) 其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12. 设“方程f(x)=0有两个不相等的实根”为事件A, 当a≥0,b≥0时方程f(x)=0有两个不相等实根的充要条件为a>b 当a>b时,a的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2) 即A包含的基本事件数为6. ∴方程f(x)=0有两个不相等的实根的概率P(A)== (2)∵a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数 则试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3}这是一个矩形区域,其面积SΩ=2×3=6 设“方程f(x)=0没有实根”为事件B 则事件B构成的区域为M={(a,b)|0≤a≤2,0≤b≤3,a≤b}即图中阴影部分的梯形,其面积SM=6-×2×2=4 由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)===.
复制答案
考点分析:
相关试题推荐
如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=manfen5.com 满分网,PB=2,E,F分别是BC,PC的中点
(1)证明:AD⊥平面DEF
(2)求二面角P-AD-B的余弦值.

manfen5.com 满分网 查看答案
某校高二数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人.
(1)估计这所学校成绩在90~140分之间学生的参赛人数;
(2)估计参赛学生成绩的众数、中位数和平均数.

manfen5.com 满分网 查看答案
已知命题p:∀x∈[1,2],x2-a≥0;命题q:∃x∈R,使得x2+(a-1)x+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围.
查看答案
在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是    (写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线. 查看答案
设命题p:manfen5.com 满分网,q:函数y=x2+4x+4(a+2)只有负零点.则p是q成立的    .(填条件命题) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.