满分5 > 高中数学试题 >

已知函数f(x)=xlnx. (Ⅰ)求f(x)的最小值; (Ⅱ)若对所有x≥1都...

已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值. (2)将f(x)≥ax-1在[1,+∞)上恒成立转化为不等式对于x∈[1,+∞)恒成立,然后令,对函数g(x)进行求导,根据导函数的正负可判断其单调性进而求出最小值,使得a小于等于这个最小值即可. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx. 令f'(x)>0,解得;令f'(x)<0,解得. 从而f(x)在单调递减,在单调递增. 所以,当时,f(x)取得最小值. (Ⅱ)依题意,得f(x)≥ax-1在[1,+∞)上恒成立, 即不等式对于x∈[1,+∞)恒成立. 令, 则. 当x>1时, 因为, 故g(x)是(1,+∞)上的增函数, 所以g(x)的最小值是g(1)=1, 从而a的取值范围是(-∞,1].
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

manfen5.com 满分网 查看答案
已知集合A={x|x2-3(a+1)x+2(3a+1)<0},B=manfen5.com 满分网
(1)当a=2时,求A∩B;
(2)求使B⊆A的实数a的取值范围.
查看答案
已知数列{an}满足an+1-2an=0,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=-anlog2an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.
查看答案
(北京卷文15)已知函数f(x)=2cos2x+sin2x
(Ⅰ)求f(manfen5.com 满分网)的值;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
定义:manfen5.com 满分网=ad-bc.已知a、b、c为△ABC的三个内角A、B、C的对边,若manfen5.com 满分网=0,且a+b=10,则c的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.