满分5 > 高中数学试题 >

已知点(1,)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{...

已知点(1,manfen5.com 满分网)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=manfen5.com 满分网+manfen5.com 满分网(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{manfen5.com 满分网}前n项和为Tn,问Tnmanfen5.com 满分网的最小正整数n是多少?
(1)先根据点(1,)在f(x)=ax上求出a的值,从而确定函数f(x)的解析式,再由等比数列{an}的前n项和为f(n)-c求出数列{an}的公比和首项,得到数列{an}的通项公式;由数列{bn}的前n项和Sn满足Sn-Sn-1=可得到数列{ }构成一个首项为1公差为1的等差数列,进而得到数列{ }的通项公式,再由bn=Sn-Sn-1可确定{bn}的通项公式. (2)先表示出Tn再利用裂项法求得的表达式Tn,根据Tn>求得n. 【解析】 (1)由已知f(1)=a=,∴f(x)=,等比数列{an}的前n项和为f(n)-c=c, ∴a1=f(1)=-c,a2=[f(2)-c]-[f(1)-c]=-,a3=[f(3)-c]-[f(2)-c]=- 数列{an}是等比数列,应有=q,解得c=1,q=. ∴首项a1=f(1)=-c= ∴等比数列{an}的通项公式为=. (2)∵Sn-Sn-1==(n≥2) 又bn>0,>0,∴=1; ∴数列{ }构成一个首项为1,公差为1的等差数列, ∴=1+(n-1)×1=n                 ∴Sn=n2  当n=1时,b1=S1=1, 当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1 又n=1时也适合上式, ∴{bn}的通项公式bn=2n-1. (2)== ∴ == 由,得,, 故满足的最小正整数为112.
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
查看答案
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调减区间;
(2)若不等式|f(x)-m|<1对任意manfen5.com 满分网恒成立,求实数m的取值范围.
查看答案
已知a,b,c分别为△ABC三个内角A,B,C的对边,manfen5.com 满分网
(1)求角A;
(2)若a=2,△ABC的面积为manfen5.com 满分网,求b,c.
查看答案
若数列manfen5.com 满分网中的最大项是第k项,则k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.