满分5 > 高中数学试题 >

设函数f(x)=x(ex-1)-ax2 (Ⅰ)若a=,求f(x)的单调区间; (...

设函数f(x)=x(ex-1)-ax2
(Ⅰ)若a=manfen5.com 满分网,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.
(I)求导函数,由导数的正负可得函数的单调区间; (II)f(x)=x(ex-1-ax),令g(x)=ex-1-ax,分类讨论,确定g(x)的正负,即可求得a的取值范围. 【解析】 (I)a=时,f(x)=x(ex-1)-x2,=(ex-1)(x+1) 令f′(x)>0,可得x<-1或x>0;令f′(x)<0,可得-1<x<0; ∴函数的单调增区间是(-∞,-1),(0,+∞);单调减区间为(-1,0); (II)f(x)=x(ex-1-ax). 令g(x)=ex-1-ax,则g'(x)=ex-a. 若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0. 若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0. 综合得a的取值范围为(-∞,1].
复制答案
考点分析:
相关试题推荐
已知点(1,manfen5.com 满分网)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=manfen5.com 满分网+manfen5.com 满分网(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{manfen5.com 满分网}前n项和为Tn,问Tnmanfen5.com 满分网的最小正整数n是多少?
查看答案
设函数manfen5.com 满分网,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
查看答案
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调减区间;
(2)若不等式|f(x)-m|<1对任意manfen5.com 满分网恒成立,求实数m的取值范围.
查看答案
已知a,b,c分别为△ABC三个内角A,B,C的对边,manfen5.com 满分网
(1)求角A;
(2)若a=2,△ABC的面积为manfen5.com 满分网,求b,c.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.