(I)求导函数,由导数的正负可得函数的单调区间;
(II)f(x)=x(ex-1-ax),令g(x)=ex-1-ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.
【解析】
(I)a=时,f(x)=x(ex-1)-x2,=(ex-1)(x+1)
令f′(x)>0,可得x<-1或x>0;令f′(x)<0,可得-1<x<0;
∴函数的单调增区间是(-∞,-1),(0,+∞);单调减区间为(-1,0);
(II)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g'(x)=ex-a.
若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.
若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.
综合得a的取值范围为(-∞,1].