(I)连接BD,BD∩AC=O,连接OE,根据三角形中位线定理,可得BP∥OE,根据线面平行的判定定理,我们即可得到PB∥平面ACE;
(Ⅱ)由已知俯视图为正方形,主视图和侧视图都是腰长为1的等腰直角三角形,我们易得到AC⊥BD,PA⊥BD,根据线面垂直的判定定理可得BD⊥平面PAC,再由线面垂直的性质,即可得到PC⊥BD;
(Ⅲ)由已知中主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,我们易得底面为边长为1的正方形,高为1,代入棱锥体积公式,即可得到答案.
证明:(I)连接BD,BD∩AC=O,连接OE,
易知OE是△BPD的中位线,
∴BP∥OE,
OE⊂平面ACE,
∴PB∥平面ACE.
(II)∵俯视图为正方形,
即ABCD是正方形,
∴AC⊥BD,
∵PA⊥平面ABCD,
∴PA⊥BD,
PA∩AC=A,BD⊥平面PAC.
PC⊂平面PAC.
∴PC⊥BD
【解析】
(III)由已知正方形ABCD的边长为1,
PA=1,
VC-PAB=VP-ABC=.