满分5 > 高中数学试题 >

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列...

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和manfen5.com 满分网
(3)已知有穷等差数列{cn}的项数是n(n≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n和B表示它的“兑换系数”;如果不是,说明理由.
(1)根据数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,可得a-m,a-4,a-2,a-1也是该数列的项,且a-m<a-4<a-2<a-1,由此可求m和a的值; (2)不妨设有穷数列{bn}的项数为n,根据有穷数列{bn}是“兑换系数”为a的“兑换数列”,可得bi+bn+1-i=a(1≤i≤n),从而可得数列{bn}的前n项和; (3)证明对数列{cn}中的任意一项ci(1≤i≤n)即可. (1)【解析】 因为数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列” 所以a-m,a-4,a-2,a-1也是该数列的项,且a-m<a-4<a-2<a-1----------(1分) 故a-m=1,a-4=2-------------------(3分) 即a=6,m=5.-------------------(4分) (2)证明:不妨设有穷数列{bn}的项数为n 因为有穷数列{bn}是“兑换系数”为a的“兑换数列”,所以a-bn,a-bn-1,…,a-b1也是该数列的项,-----(5分) 又因为数列{bn}是递增数列b1<b2<…<bn,且a-bn<a-bn-1<…<a-b1-------------------(6分) 则bi+bn+1-i=a(1≤i≤n)-------------------(8分) 故-------------------(10分) (3)【解析】 数列{cn}是“兑换数列”.证明如下: 设数列{cn}的公差为d,因为数列{cn}是项数为n项的有穷等差数列 若,则 即对数列{cn}中的任意一项ci(1≤i≤n)-------(12分) 同理可得:若,也成立, 由“兑换数列”的定义可知,数列{cn}是“兑换数列”;-------------------(14分) 又因为数列{bn}所有项之和是B,所以,即-------------------(18分)
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值为正数,求a的取值范围.
查看答案
某商场预计全年分批购入每台价值为2000元的电视机共3600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入所有的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,比例系数为k(k>0),若每批购入400台,则全年需用去运输和保管总费用43600元.
(1)求k的值;
(2)现在全年只有24000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
查看答案
在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设bn=manfen5.com 满分网.证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn
查看答案
已知函数y=log(4x-3-x2)定义域为M,求x∈M时,函数f(x)=2x+2-4x的值域.
查看答案
在△ABC中,已知manfen5.com 满分网,b=1,B=30°,
(1)求出角C和A;
(2)求△ABC的面积S.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.