满分5 > 高中数学试题 >

已知函数f(x)=x2+ax-lnx,a∈R. (1)若函数f(x)在[1,2]...

已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:manfen5.com 满分网
(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围. (2)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx结合(2)中知F(x)的最小值为3,再令并求导,再由导函数在0<x≤e大于等于0可判断出函数ϕ(x)在(0,e]上单调递增,从而可求得最大值也为3,即有成立,即成立. 【解析】 (1)在[1,2]上恒成立, 令h(x)=2x2+ax-1,有得, 得 (2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,= ①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=35,(舍去), ②当时,g(x)在上单调递减,在上单调递增 ∴,a=e2,满足条件. ③当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), 综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3. (3)令F(x)=e2x-lnx,由(2)知,F(x)min=3. 令,, 当0<x≤e时,ϕ'(x)≥0,φ(x)在(0,e]上单调递增 ∴ ∴,即>(x+1)lnx.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)设h(x)=x•f(x)-x-ax3在(0,2)上有极值,求a的取值范围.
查看答案
某人居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为manfen5.com 满分网,路段CD发生堵车事件的概率为manfen5.com 满分网
(1)请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(I)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围;
(II)若对任意a∈[-1,1],f(x)>4恒成立,求实数x的取值范围.
查看答案
已知在直角坐标系xoy中,直线l过点P(1,-5),且倾斜角为manfen5.com 满分网,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,半径为4的圆C的圆心的极坐标为manfen5.com 满分网
(Ⅰ)写出直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.
查看答案
设函数f(x)=|2x-2|+|x+3|.
(1)解不等式f(x)>6;
(2)若关于x的不等式f(x)≤|2a-1|的解集不是空集,试求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.