满分5 > 高中数学试题 >

设全集U=R,已知集合A={x||x-a|≤1},B={x|(4-x)(x-1)...

设全集U=R,已知集合A={x||x-a|≤1},B={x|(4-x)(x-1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求实数a的取值范围.
(1)当a=4,A={x||x-a|≤1}={x|-1+a≤x≤1+a}={x|3≤x≤5},B={x|(4-x)(x-1)≤0}={x|x≥4或x≤1},由此能求出A∪B. (2)A={x||x-a|≤1}={x|-1+a≤x≤1+a},B={x|(4-x)(x-1)≤0}={x|x≥4或x≤1},若A∩B=A,则A⊆B,由此能求出实数a的取值范围. 【解析】 (1)当a=4,A={x||x-a|≤1} ={x|-1+a≤x≤1+a} ={x|3≤x≤5}, B={x|(4-x)(x-1)≤0} ={x|x≥4或x≤1}, ∴A∪B={x|x≥3或x≤1} (2)A={x||x-a|≤1} ={x|-1+a≤x≤1+a}, B={x|(4-x)(x-1)≤0} ={x|x≥4或x≤1}, 若A∩B=A,则A⊆B, ∴-1+a≥4或1+a≤1, ∴a≥5或a≤0.
复制答案
考点分析:
相关试题推荐
已知函数y=f(x)和y=g(x)在[-2,2]的图象如图所示:
manfen5.com 满分网
给出下列四个命题:
①方程g[g(x)]=0有且仅有3个根      ②方程g[f(x)]=0有且仅有4个根  
③方程f[f(x)]=0有且仅有5个根      ④方程f[g(x)]=0有且仅有6个根.
其中正确的命题的序号是    查看答案
定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=|log0.5x|定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值为    查看答案
已知y=logα(3-2αx)在[0,1]上为x的减函数,则α的取值范围为    查看答案
设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=x(1+x),则当x>0时,f(x)=    查看答案
若f(x)为偶函数且在(-∞,0)上是减函数,又f(-2)=0,则x•f(x)<0的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.