(1)利用奇函数的定义找关系求解出字母的值,注意对多解的取舍.
(2)利用单调性的定义证明函数在给定区间上的单调性,关键要在自变量大小的前提下推导出函数值的大小.
(3)将恒成立问题转化为函数的最值问题,用到了分离变量的思想.
【解析】
(1)∵f(x)是奇函数,∴f(-x)=-f(x).
∴.
检验a=1(舍),∴a=-1.
(2)由(1)知
证明:任取1<x2<x1,∴x1-1>x2-1>0
∴
即f(x1)>f(x2).
∴f(x)在(1,+∞)内单调递增.
(3)对[3,4]于上的每一个x的值,不等式恒成立,即恒成立.
令.只需g(x)min>m,
又易知在[3,4]上是增函数,
∴.
∴时原式恒成立.