满分5 > 高中数学试题 >

如果由数列{an}生成的数列{bn}满足对任意的n∈N*均有bn+1<bn,其中...

如果由数列{an}生成的数列{bn}满足对任意的n∈N*均有bn+1<bn,其中bn=an+1-an,则称数列{an}为“Z数列”.
(Ⅰ)在数列{an}中,已知an=-n2,试判断数列{an}是否为“Z数列”;
(Ⅱ)若数列{an}是“Z数列”,a1=0,bn=-n,求an
(Ⅲ)若数列{an}是“Z数列”,设s,t,m∈N*,且s<t,求证:at+m-as+m<at-as
(Ⅰ)由题设条件知bn=an+1-an=-(n+1)2+n2=-2n-1,n∈N*,由此可得bn+1-bn=-2(n+1)-1+2n+1=-2,所以bn+1<bn,数列{an}是“Z数列”. (Ⅱ)由题意知an-an-1=bn-1=-(n-1),由此可知(n≥2). Ⅲ)由as+m-as=(as+m-as+m-1)++(as+1-as)=bs+m-1++bs,at+m-at=(at+m-at+m-1)++(at+1-at)=bt+m-1++bt, 知bs+m-1>bt+m-1,bs+m-2>bt+m-2,,bs>bt,所以at+m-at<as+m-as,即at+m-as+m<at-as. 【解析】 (Ⅰ)因为an=-n2, 所以bn=an+1-an=-(n+1)2+n2=-2n-1,n∈N*,(2分) 所以bn+1-bn=-2(n+1)-1+2n+1=-2, 所以bn+1<bn,数列{an}是“Z数列”.(4分) (Ⅱ)因为bn=-n, 所以a2-a1=b1=-1,a3-a2=b2=-2,an-an-1=bn-1=-(n-1), 所以(n≥2),(6分) 所以(n≥2), 又a1=0,所以(n∈N*).(8分) (Ⅲ)因为as+m-as=(as+m-as+m-1)++(as+1-as)=bs+m-1++bs,at+m-at=(at+m-at+m-1)++(at+1-at)=bt+m-1++bt, (10分) 又s,t,m∈N*,且s<t,所以s+i<t+i,bs+i>bt+i,n∈N*, 所以bs+m-1>bt+m-1,bs+m-2>bt+m-2,,bs>bt,(12分) 所以at+m-at<as+m-as,即at+m-as+m<at-as.(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.(a∈R)
(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;
(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.
查看答案
已知定义域为R的函数f(x)=manfen5.com 满分网是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案
在△ABC中,已知manfen5.com 满分网
(1)求证:tanB=3tanA;
(2)若tanC=2,求A的值.
查看答案
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为manfen5.com 满分网.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为manfen5.com 满分网
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
查看答案
在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.
(Ⅰ)求角A的大小;
(Ⅱ)设函数manfen5.com 满分网,求f(B)的最大值,并判断此时△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.