由已知中指数函数y=ax在[0,1]上的最大值与最小值的和为3,根据指数函数一定为单调函数,则最大值与最小值的和一定等于a+1,由此构造方程,解方程即可得到答案.
【解析】
若a>1,则指数函数y=ax在[0,1]上单调递增;
则指数函数y=ax在[0,1]上的最小值与最大值分别为1和a,
又∵指数函数y=ax在[0,1]上的最大值与最小值的和为3,
则a+1=3,解得a=2
若0<a<1,则指数函数y=ax在[0,1]上单调递减;
则指数函数y=ax在[0,1]上的最大值与最小值分别为1和a,
又∵指数函数y=ax在[0,1]上的最大值与最小值的和为3,
则a+1=3,解得a=2(舍去)
故答案为:2