满分5 > 高中数学试题 >

定义:若函数f(x)对于其定义域内的某一数x,有f(x)=x,则称x是f(x)的...

定义:若函数f(x)对于其定义域内的某一数x,有f(x)=x,则称x是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数manfen5.com 满分网的图象上,求b的最小值.
(参考公式:A(x1,y1),B(x2,y2)的中点坐标为manfen5.com 满分网
(I)将a=1,b=-2代入f(x)=ax2+(b+1)x+b-1 (a≠0),求出f(x),令f(x)=x,解方程求不动点即可; (II)由ax2+(b+1)x+b-1=x有两个不动点,即ax2+bx+b-1=0有两个不等实根,可通过判别式大于0得到关于参数a,b的不等式b2-4ab+4a>0,由于此不等式恒成立,配方可得b2-4ab+4a=(b-2a)2+4a-4a2>0恒成立,将此不等式恒成立转化为4a-4a2>0即可. (III)由于本小题需要根据两个点A、B的坐标转化点关于线的对称这一条件,故可以先设出两点的坐标分别为A(x1,x1),B(x2,x2)(x1≠x2),可以得到x1+x2=,由此联想到根与系数的关系,由(II)知,x1、x2应是方程ax2+bx+b-1=0的根,故又可得x1+x2=-,至此题设中的条件转化为-=,观察发现参数b可以表示成参数a的函数即 ,至此,求参数b的问题转化为求b关于a的函数最小值的问题. 【解析】 (1)f(x)=x2-x-3,由x2-x-3=x, 解得x=3或x=-1,所以所求的不动点为-1或3. (2)令ax2+(b+1)x+b-1=x,则ax2+bx+b-1=0① 由题意,方程①恒有两个不等实根,所以△=b2-4a(b-1)>0, 即b2-4ab+4a>0恒成立, 则△'=16a2-16a<0,故0<a<1 (3)设A(x1,x1),B(x2,x2)(x1≠x2),, 又AB的中点在该直线上,所以, ∴, 而x1、x2应是方程①的两个根,所以,即, ∴=-=- ∴当a=∈(0,1)时,bmin=-1
复制答案
考点分析:
相关试题推荐
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.
查看答案
某市居民自来水收费标准如下:每户每月用水不超过4吨时每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x(吨).
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
(精确到0.1)
查看答案
已知二次函数f(x)满足f(x-3)=f(-x-3),且该函数的图象与y轴交于点(0,-1),在x轴上截得的线段长为manfen5.com 满分网
(1)确定该二次函数的解析式;
(2)当x∈[-6,-1]时,求f(x)值域.
查看答案
已知集合A={x|x-a<0},B={x|x2-2x-8<0}.
(1)若a=3,全集U=A∪B,求B∪(CUA);
(2)若A∩B=B,求实数a的取值范围.
查看答案
已知函数manfen5.com 满分网在R上单调递增,则实数a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.