定义:若函数f(x)对于其定义域内的某一数x
,有f(x
)=x
,则称x
是f(x)的一个不动点.已知函数f(x)=ax
2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数
的图象上,求b的最小值.
(参考公式:A(x
1,y
1),B(x
2,y
2)的中点坐标为
)
查看答案
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x
2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.
查看答案