满分5 > 高中数学试题 >

已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,在区间(-∞,...

已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,在区间(-∞,-2]上是减函数,则f(1)等于( )
A.-7
B.1
C.17
D.25
由已知中函数的单调区间,可得函数f(x)=4x2-mx+5的图象关于直线x=-2对称,由对称轴直线方程求出m值后,代入可得f(1)的值. 【解析】 ∵函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,在区间(-∞,-2]上是减函数, 故函数f(x)=4x2-mx+5的图象关于直线x=-2对称; 故=-2 解得m=-16 故f(x)=4x2+16x+5 ∴f(1)=4+16+5=25 故选D
复制答案
考点分析:
相关试题推荐
某商品的总成本y(万元)与产量x(台)之间的函数关系是y=0.1x2-11x+3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于( )
A.55台
B.120台
C.150台
D.180台
查看答案
设集合S={x||x|<5},T={x|x2+4x-21<0},则S∩T=( )
A.{x|-7<x<-5}
B.{x|3<x<5}
C.{x|-5<x<3}
D.{x|-7<x<5}
查看答案
已知manfen5.com 满分网,则下列正确的是( )
A.奇函数,在R上为增函数
B.偶函数,在R上为增函数
C.奇函数,在R上为减函数
D.偶函数,在R上为减函数
查看答案
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数manfen5.com 满分网,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.
查看答案
某公园准备建一个摩天轮,摩天轮的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为manfen5.com 满分网元.假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y元.
(1)试写出y关于x的函数关系式,并写出定义域;
(2)当k=100米时,试确定座位的个数,使得总造价最低?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.