(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.
(2)先写出Tn的表达式;方法一:借助于错位相减求和;
方法二:用数学归纳法证明其成立.
【解析】
(1)设等差数列的公差为d,等比数列的公比为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由条件a4+b4=27,s4-b4=10,
得方程组,解得,
故an=3n-1,bn=2n,n∈N*.
(2)证明:方法一,由(1)得,Tn=2an+22an-1+23an-2+…+2na1; ①;
2Tn=22an+23an-1+…+2na2+2n+1a1; ②;
由②-①得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2
=+2n+2-6n+2
=10×2n-6n-10;
而-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10;
故Tn+12=-2an+10bn(n∈N*).
方法二:数学归纳法,
③当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立,
④假设当n=k时等式成立,即Tk+12=-2ak+10bk,
则当n=k+1时有,
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1
=ak+1b1+q(akb1+ak-1b2+…+a1bk)
=ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)
=2ak+1-4(ak+1-3)+10bk+1-24
=-2ak+1+10bk+1-12.
即Tk+1+12=-2ak+1+10bk+1,因此n=k+1时等式成立.
③④对任意的n∈N*,Tn+12=-2an+10bn成立.