满分5 > 高中数学试题 >

某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如...

某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
manfen5.com 满分网
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元投资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
(1)设出函数解析式,根据图象f(1)=0.25,g(4)=4,即可求得结论; (2)①利用(1)的结论,可得总利润;②确定总利润函数,换元,利用配方法,可求最值. 【解析】 (1)设甲、乙两种产品分别投资x万元(x≥0),所获利润分别为f(x)、g(x)万元, 由题意可设f(x)=k1x,g(x)=k2, ∴根据图象f(1)=0.25,g(4)=4 ∴f(x)=0.25x(x≥0),g(x)=2(x≥0).…2′ (2)①由(1)得f(9)=2.25,g(9)=2=6,∴总利润y=8.25(万元).….4′ ②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元, 则y=(18-x)+2,0≤x≤18…..6′ 令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.…8′ ∴当t=4时,ymax==8.5,此时x=16,18-x=2. ∴当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.…9′
复制答案
考点分析:
相关试题推荐
设函数f(x)=x2+2ax-a-1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)-m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
查看答案
若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.
(1)已知函数manfen5.com 满分网的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在R上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2-2x,求函数g(x)在R上的解析式.
查看答案
已知函数f(x)=loga(1-x)+loga(x+3)(a>0,且a≠1)
(1)求函数f(x)的定义域和值域;
(2)若函数 f(x)有最小值为-2,求a的值.
查看答案
已知全集为R,集合A={x|x2-6x+5>0},B={x|x2-3ax+2a2<0}
(1)当a=3时,求B∩CRA;
(2)当A∪B=A时,求a的取值范围.
查看答案
给出下列命题:
(1)幂函数的图象都过点(1,1),(0,0);
(2)幂函数的图象不可能是一条直线;
(3)n=0时,函数y=xn的图象是一条直线;
(4)幂函数y=xn当n>0时,是增函数;
(5)幂函数y=xn当n<0时,在第一象限内函数值随x值的增大而减少.其中正确的命题序号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.