满分5 > 高中数学试题 >

已知函数f(x)=alnx+x2(a为实常数). (1)若a=-2,求证:函数f...

已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
(1)当a=-2时故函数 在(1,+∞)上是增函数. (2),当x∈[1,e],2x2+a∈[a+2,a+2e2].若a≥-2,f'(x)在[1,e]上非负,故函数f(x)在[1,e]上是增函数. 若-2e2<a<-2,当时f'(x)=0,当时,f'(x)<0,此时f(x)是减函数; 当时,f'(x)>0,此时f(x)是增函数. 所以此时有最值.若a≤-2e2,f'(x)在[1,e]上非正,所以[f(x)]min=f(e)=a+e2. (3)由题意可化简得(x∈[1,e]),令(x∈[1,e]),利用导数判断其单调性求出最小值为g(1)=-1. 【解析】 (1)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞),, (2),当x∈[1,e],2x2+a∈[a+2,a+2e2]. 若a≥-2,f'(x)在[1,e]上非负(仅当a=-2,x=1时,f'(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1. 若-2e2<a<-2,当时,f'(x)=0; 当时,f'(x)<0,此时f(x)是减函数;  当时,f'(x)>0,此时f(x)是增函数. 故[f(x)]min==. 若a≤-2e2,f'(x)在[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0), 故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2. 综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1;当-2e2<a<-2时,f(x) 的最小值为,相应的x值为;当a≤-2e2时,f(x)的最小值为a+e2, 相应的x值为e. (3)不等式f(x)≤(a+2)x,可化为a(x-lnx)≥x2-2x. ∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x-lnx>0, 因而(x∈[1,e]) 令(x∈[1,e]),又, 当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0, 从而g'(x)≥0(仅当x=1时取等号),所以g(x)在[1,e]上为增函数, 故g(x)的最小值为g(1)=-1,所以a的取值范围是[-1,+∞).
复制答案
考点分析:
相关试题推荐
如图,已知矩形ABCD的一边AB在x轴上,另两个顶点C,D落在抛物线弧y=-x2+2x(0<x<2)上.设点C的横坐标为x.
(1)将矩形ABCD的面积S(x)表示为x的函数;
(2)求S(x)取最大值时对应的x值.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网是奇函数,
(1)求常数a的值;  
(2)求f(x)的定义域和值域;
(3)讨论f(x)的单调性并证明.
查看答案
设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足manfen5.com 满分网
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案
已知全集为R,集合A={x|-2≤x≤5},集合B={x|a<x<a+3},C={x|0<x≤7}.
(1)求CRA;  
(2)求CR(A∩C);  
(3)若B⊆CRA,求实数a的范围.
查看答案
设复数Z=m2-2m-3+(m2+3m+2)i,试求实数m取何值时
(1)Z是实数;   
(2)Z是纯虚数; 
(3)Z对应的点位于复平面的第一象限.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.