(I)由Sn=2n2+n可得,当n=1时,可求a1=,当n≥2时,由an=sn-sn-1可求通项,进而可求bn
(II)由(I)知,,利用错位相减可求数列的和
解(I)由Sn=2n2+n可得,当n=1时,a1=s1=3
当n≥2时,an=sn-sn-1=2n2+n-2(n-1)2-(n-1)=4n-1
而n=1,a1=4-1=3适合上式,
故an=4n-1,
又∵足an=4log2bn+3=4n-1
∴
(II)由(I)知,
2Tn=3×2+7×22+…+(4n-5)•2n-1+(4n-1)•2n
∴
=(4n-1)•2n
=(4n-1)•2n-[3+4(2n-2)]=(4n-5)•2n+5