满分5 > 高中数学试题 >

函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值2,求实数a的值....

函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值2,求实数a的值.
先求对称轴,比较对称轴和区间的关系,利用开口向下的二次函数离对称轴越近函数值越大来解题. 【解析】 对称轴x=a, 当a<0时,[0,1]是f(x)的递减区间,f(x)max=f(0)=1-a=2 ∴a=-1; 当a>1时,,[0,1]是f(x)的递增区间,f(x)max=f(1)=a=2 ∴a=2; 当0≤a≤1时,f(x)max=f(a)=)=a2-a+1=2, 解得a=,与0≤a≤1矛盾; 所以a=-1或a=2.
复制答案
考点分析:
相关试题推荐
a是实数,manfen5.com 满分网,用定义证明:对于任意a,f(x)在R上为增函数.
查看答案
已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,求m的取值范围.
查看答案
知二次函数f(x)满足f(-2+k)=f(-2-k)(k∈R),且该函数的图象与y轴交于点(0,1),在x轴上截得的线段长为manfen5.com 满分网,求该二次函数解析式为    查看答案
函数y=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大manfen5.com 满分网,则a的值是    查看答案
函数manfen5.com 满分网单调减区间是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.