满分5 > 高中数学试题 >

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线...

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
(1)由勾股定理可得 PQ2=OP2-OQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2,化简可得a,b间满足的等量关系. (2)由于 PQ==,利用二次函数的性质求出它的最小值. (3)设⊙P 的半径为R,可得|R-1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=-2a+3=,R取得最小值为-1,从而得到圆的标准方程. 【解析】 (1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2-OQ2. 由已知PQ=PA,可得 PQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2. 花简可得 2a+b-3=0. (2)∵PQ====, 故当a=时,线段PQ取得最小值为. (3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R-1|≤PO≤R+1. 而OP===,故当a=时,PO取得最小值为, 此时,b=-2a+3=,R取得最小值为-1. 故半径最小时⊙P 的方程为 +=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)求直线AM与平面ABCD所成角的正切值.
查看答案
已知直线l:kx-y+1+2k=0(k∈R).
(1)若直线l不经过第四象限,求k的取值范围;
(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.
查看答案
manfen5.com 满分网在三棱锥S-ABC中,△ABC是边长为2manfen5.com 满分网的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.
(1)证明:AC⊥SB;
(2)求三棱锥B-CMN的体积.
查看答案
如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)AD边所在直线的方程;
(2)矩形ABCD外接圆的方程.

manfen5.com 满分网 查看答案
直线ax+by=1与圆x2+y2=1相交于A,B两点,若△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(2,2)之间距离的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.