设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a-b=b-c=2,a=c+4,b=c+2,因为sinA=,所以A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.由余弦定理能求出三边长,从而得到这个三角形的周长.
【解析】
不妨设三角形的三边分别为a、b、c,且a>b>c>0,
设公差为d=2,三个角分别为、A、B、C,
则a-b=b-c=2,
a=c+4,b=c+2,
∵sinA=,
∴A=60°或120°.
若A=60°,因为三条边不相等,
则必有角大于A,矛盾,故A=120°.
cosA=
=
=
=-.
∴c=3,
∴b=c+2=5,a=c+4=7.
∴这个三角形的周长=3+5+7=15.
故选D.