满分5 > 高中数学试题 >

已知等差数列{an}的前n项和为Sn且满足a2=3,S6=36. (1)求数列{...

已知等差数列{an}的前n项和为Sn且满足a2=3,S6=36.
(1)求数列{an}的通项公式;
(2)若数列{bn}是等比数列且满足b1+b2=3,b4+b5=24.设数列{an•bn}的前n项和为Tn,求Tn
(1)本题是对数列的基本量的考查,根据所给的数列的一项和前六项的和,用求和公式,得到它的另一项,算出公差和首项,写出通项公式. (2)根据所给的等比数列的两个等式,得到等比数列的首项和公比,写出通项,题目要求的是两个数列的积的形式的前n项和,并且一个数列是等比,一个是等差,采用错位相减法. 【解析】 (1)∵数列{an}是等差数列, ∴S6=3(a1+a6)=3(a2+a5)=36. ∵a2=3,∴a5=9,∴3d=a5-a2=6,∴d=2, 又∵a1=a2-d=1,∴an=2n-1. (2)由等比数列{bn}满足b1+b2=3,b4+b5=24, 得=q3=8,∴q=2, ∵b1+b2=3,∴b1+b1q=3,∴b1=1,bn=2n-1, ∴an•bn=(2n-1)•2n-1. ∴Tn=1×1+3×2+5×22+…+(2n-3)•2n-2+(2n-1)•2n-1, 则2Tn=1×2+3×22+5×23+…+(2n-3)•2n-1+(2n-1)•2n, 两式相减得(1-2)Tn=1×1+2×2+2×22++2•2n-2+2•2n-1-(2n-1)•2n,即 -Tn=1+2(21+22++22n-1)-(2n-1)•2n =1+2(2n-2)-(2n-1)•2n=(3-2n)•2n-3, ∴Tn=(2n-3)•2n+3.
复制答案
考点分析:
相关试题推荐
在△ABC中,A、B、C为三个内角,f(B)=4cos Bsin2manfen5.com 满分网+manfen5.com 满分网)+manfen5.com 满分网cos 2B-2cos B.
(Ⅰ)若f(B)=2,求角B;   
(Ⅱ)若f(B)-m>2恒成立,求实数m的取值范围.
查看答案
(1)判断函数f(x)=manfen5.com 满分网在x∈(0,+∞)上的单调性并证明你的结论?
(2)猜想函数manfen5.com 满分网在x∈(-∞,0)∪(0,+∞)上的单调性?(只需写出结论,不用证明)
(3)利用题(2)的结论,求使不等式manfen5.com 满分网在x∈[1,5]上恒成立时的实数m的取值范围?
查看答案
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.
查看答案
已知函数manfen5.com 满分网的定义域为M.
(1)求M;
(2)当x∈M时,求函数f(x)=a•2x+2+3•4x(a<-3)的最小值.
查看答案
已知函数manfen5.com 满分网
(1)判断函数f(x)的单调性,并证明;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下,解不等式:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.