满分5 > 高中数学试题 >

已知方程x2+y2-2x-4y+m=0. (1)若此方程表示圆,求m的取值范围;...

已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且manfen5.com 满分网(其中O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
(1)将x2+y2-2x-4y+m=0转化为:(x-1)2+(y-2)2=5-m,由方程表示圆,则有5-m>0. (2)先将直线与圆方程的联立,由相交于两点,则有△=(-16)2-4×5×(8+m)>0,又,得出x1x2+y1y2=0,由韦达定理求解. (3)线段的中点为圆心,圆心到端点的距离为半径,从而求得结论. 【解析】 (1)x2+y2-2x-4y+m=0即(x-1)2+(y-2)2=5-m(2分) 若此方程表示圆,则5-m>0∴m<5 (2)x=4-2y代入得5y2-16y+8+m=0 ∵△=(-16)2-4×5×(8+m)>0 ∴, ∵得出:x1x2+y1y2=0而x1x2=(4-2y1)•(4-2y2)=16-8(y1+y2)+4y1y2 ∴5y1y2-8(y1+y2)+16=0,∴满足故的m值为. (3)设圆心为(a,b),且O点为以MN为直径的圆上的点 半径圆的方程
复制答案
考点分析:
相关试题推荐
某高级中学共有学生3 000名,各年级男、女生人数如下表:
高一年级高二年级高三年级
男生595560y
女生605xz
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.18.
(1)求x的值;
(2)现用分层抽样的方法在全校抽取120名学生,问应在高三年级抽取学生多少名?
(3)在(2)的前提下,已知y≥345,z≥345,求高三年级中男生比女生多的概率.
查看答案
在数学必修(3)模块修习测试中,某校有1000名学生参加,从参加考试的学生中抽出60名,将其考试成绩(均为整数)整理后画出的频率分布直方图如下,试根据图形提供的信息解答下列问题.
(1)求出这60名学生的考试成绩众数的估计值;
(2)分别求出成绩在[139,149)和[99,109)之间的人数;
(3)若成绩在[139,149)中有2人的分数大于140,求成绩在[139,149)之间的所有学生中随机抽取2人,至少有1人的得分大于140的概率.

manfen5.com 满分网 查看答案
已知棱长为4的正方体和其内切球O,质点P能均匀地落在正方体的任何位置,求质点P落在其内切球内的概率.
查看答案
(1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上圆方程;
(2)求直线2x-y-1=0被圆x2+y2-2y-1=0所截得的弦长.
查看答案
计算下列各题:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
(3)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.