满分5 > 高中数学试题 >

如图,在△ABC中,,以B、C为焦点的椭圆恰好过AC的中点P. (1)求椭圆的标...

如图,在△ABC中,manfen5.com 满分网,以B、C为焦点的椭圆恰好过AC的中点P.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点A1作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1:3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.

manfen5.com 满分网
(1)确定A,C的坐标,即可得到P的坐标,利用椭圆的定义,求得长轴长,进而可求椭圆的方程; (2)椭圆的右顶点A1(2,0),圆E的圆心为E(1,0),半径,假设点M、N能将圆E分割成弧长比值为1:3的两段弧,则可得∠MEN=90°,圆心E(1,0)到直线l的距离,分类讨论:当直线l斜率不存在时,l的方程为x=2;当直线l斜率存在时,设l的方程为y=k(x-2),即kx-y-2k=0,求出圆心E(1,0)到直线l的距离即可得到结论. 【解析】 (1)∵ ∴|BO|=|OC|=1,…(2分) ∴ ∴…(4分) 依椭圆的定义有:= ∴a=2,…(6分) 又c=1,∴b2=a2-c2=3…(7分) ∴椭圆的标准方程为…(8分) (2)椭圆的右顶点A1(2,0),圆E的圆心为E(1,0),半径. 假设点M、N能将圆E分割成弧长比值为1:3的两段弧,则∠MEN=90°,圆心E(1,0)到直线l的距离…(10分) 当直线l斜率不存在时,l的方程为x=2,此时圆心E(1,0)到直线l的距离d=1(符合)…(11分) 当直线l斜率存在时,设l的方程为y=k(x-2),即kx-y-2k=0, ∴圆心E(1,0)到直线l的距离,无解…(13分) 综上:点M、N能将圆E分割成弧长比值为1:3的两段弧,此时l方程为x=2…(14分).
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn满足Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3
(1)求数列{an}、{bn}的通项公式;
(2)设manfen5.com 满分网,数列{cn}的前n项和为Tn,问Tnmanfen5.com 满分网的最小正整数n是多少?
查看答案
如图是某三棱柱被削去一个底面后的直观图与侧视图、俯视图.已知CF=2AD,侧视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.
(Ⅰ)求该几何体的体积;
(Ⅱ)求二面角B-DE-F的余弦值.
manfen5.com 满分网
查看答案
某校从参加某次“广州亚运”知识竞赛测试的学生中随机抽出60名学生,将其成绩(百分制)(均为整数)分成六段[40,50)[50,60)…[90,100)下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)若从60名学生随机抽取2名,抽到的学生成绩在[40,70)记0分,在[70,100)记1分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(sinmanfen5.com 满分网,cosmanfen5.com 满分网),manfen5.com 满分网=(cosmanfen5.com 满分网manfen5.com 满分网cosmanfen5.com 满分网),函数f(x)=manfen5.com 满分网manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)如果△ABC的三边a、b、c,满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.
查看答案
(几何证明选讲选做题)已知PA是⊙O的切线,切点为A,直线PO交⊙O于B、C两点,AC=2,∠PAB=120°,则⊙O的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.