设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与
的大小关系;
(Ⅲ)求a的取值范围,使得g(a)-g(x)<
对任意x>0成立.
考点分析:
相关试题推荐
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?
查看答案
已知等差数列{a
n}满足:a
n+1>a
n(n∈N
*),a
1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b
n}的前三项.
(Ⅰ)分别求数列{a
n},{b
n}的通项公式;
(Ⅱ)设
,求证:T
n<3.
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=
,∠CDA=45°,求四棱锥P-ABCD的体积.
查看答案
在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b
2+c
2=bc+a
2(1)求∠A;
(2)若
,求b
2+c
2的取值范围.
查看答案
已知函数
.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的
,把所得到的图象再向左平移
单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间
上的最小值.
查看答案