满分5 > 高中数学试题 >

设f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的单调区间...

设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与manfen5.com 满分网的大小关系;
(Ⅲ)求a的取值范围,使得g(a)-g(x)<manfen5.com 满分网对任意x>0成立.
(I)求导,并判断导数的符号确定函数的单调区间和极值、最值,即可求得结果; (Ⅱ)通过函数的导数,利用函数的单调性,半径两个函数的大小关系即可. (Ⅲ)利用(Ⅰ)的结论,转化不等式,求解即可. 【解析】 (Ⅰ)由题设知f(x)=lnx,g(x)=lnx+, ∴g'(x)=,令g′(x)=0得x=1, 当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间. 当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间, 因此,x=1是g(x)的唯一值点,且为极小值点, 从而是最小值点,所以最小值为g(1)=1. (II) 设,则h'(x)=-, 当x=1时,h(1)=0,即, 当x∈(0,1)∪(1,+∞)时,h′(1)=0, 因此,h(x)在(0,+∞)内单调递减, 当0<x<1时,h(x)>h(1)=0,即, 当x>1时,h(x)<h(1)=0,即. (III)由(I)知g(x)的最小值为1, 所以,g(a)-g(x)<,对任意x>0,成立⇔g(a)-1<, 即Ina<1,从而得0<a<e.
复制答案
考点分析:
相关试题推荐
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?
查看答案
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,求证:Tn<3.
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=manfen5.com 满分网,∠CDA=45°,求四棱锥P-ABCD的体积.
查看答案
在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2
(1)求∠A;
(2)若manfen5.com 满分网,求b2+c2的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的manfen5.com 满分网,把所得到的图象再向左平移manfen5.com 满分网单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间manfen5.com 满分网上的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.