满分5 > 高中数学试题 >

已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点. (1)求证:OA⊥...

已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于manfen5.com 满分网时,求k的值.
(1)证明OA⊥OB可有两种思路:①证kOA•kOB=-1;②取AB中点M,证|OM|=|AB|. (2)求k的值,关键是利用面积建立关于k的方程,求△AOB的面积也有两种思路:①利用S△OAB=|AB|•h(h为O到AB的距离);②设A(x1,y1)、B(x2,y2),直线和x轴交点为N,利用S△OAB=|AB|•|y1-y2|. 【解析】 (1)由方程y2=-x,y=k(x+1) 消去x后,整理得 ky2+y-k=0. 设A(x1,y1)、B(x2,y2),由韦达定理y1•y2=-1. ∵A、B在抛物线y2=-x上, ∴y12=-x1,y22=-x2,y12•y22=x1x2. ∵kOA•kOB=•===-1, ∴OA⊥OB. (2)设直线与x轴交于N,又显然k≠0, ∴令y=0,则x=-1,即N(-1,0). ∵S△OAB=S△OAN+S△OBN =|ON||y1|+|ON||y2| =|ON|•|y1-y2|, ∴S△OAB=•1• =. ∵S△OAB=, ∴=.解得k=±.
复制答案
考点分析:
相关试题推荐
已知直线l:x-2y=0,点A(-1,-2).求:
(Ⅰ)点A关于直线l的对称点A′的坐标.
(Ⅱ)直线m:3x-2y-1=0关于直线l对称的直线n的方程.
查看答案
已知实数x,y满足x2+y2-4x+2y+1=0.
(Ⅰ)求x2+y2的最大值和最小值.
(Ⅱ)求4x+3y的最大值和最小值.
查看答案
在平面直角坐标系xoy中,椭圆方程为manfen5.com 满分网=1(a>b>0).以O为圆心,a为半径作圆M,若过点P(a,2b)所作圆M的两条切线为PA、PB,且|AB|=2b,则该椭圆的离心率为    查看答案
已知△ABC的顶点A(-5,0),B(5,0),顶点C在双曲线manfen5.com 满分网=1上,则manfen5.com 满分网=    查看答案
直线l经过点A(2,1),B(1,cos2a),那么直线l的倾斜角的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.