满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD...

manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
法一:(1)连接AC,AC交BD于O,连接EO要证明PA∥平面EDB,只需证明直线PA平行平面EDB内的直线EO; (2)要证明PB⊥平面EFD,只需证明PB垂直平面EFD内的两条相交直线DE、EF,即可; (3)必须说明∠EFD是二面角C-PB-D的平面角,然后求二面角C-PB-D的大小. 法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a. (1)连接AC,AC交BD于G,连接EG,求出,即可证明PA∥平面EDB; (2)证明EF⊥PB,,即可证明PB⊥平面EFD; (3)求出,利用,求二面角C-PB-D的大小. 【解析】 方法一: (1)证明:连接AC,AC交BD于O,连接EO. ∵底面ABCD是正方形,∴点O是AC的中点 在△PAC中,EO是中位线,∴PA∥EO 而EO⊂平面EDB且PA⊄平面EDB, 所以,PA∥平面EDB (2)证明: ∵PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC ∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线, ∴DE⊥PC.① 同样由PD⊥底面ABCD,得PD⊥BC. ∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC. 而DE⊂平面PDC,∴BC⊥DE.② 由①和②推得DE⊥平面PBC. 而PB⊂平面PBC,∴DE⊥PB 又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD. (3)【解析】 由(2)知,PB⊥DF,故∠EFD是二面角C-PB-D的平面角. 由(2)知,DE⊥EF,PD⊥DB. 设正方形ABCD的边长为a, 则,. 在Rt△PDB中,. 在Rt△EFD中,,∴. 所以,二面角C-PB-D的大小为. 方法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a. (1)证明:连接AC,AC交BD于G,连接EG. 依题意得. ∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为且. ∴,这表明PA∥EG. 而EG⊂平面EDB且PA⊄平面EDB,∴PA∥平面EDB. (2)证明;依题意得B(a,a,0),. 又,故. ∴PB⊥DE. 由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD. (3)【解析】 设点F的坐标为(x,y,z),,则(x,y,z-a)=λ(a,a,-a). 从而x=λa,y=λa,z=(1-λ)a.所以. 由条件EF⊥PB知,,即,解得 ∴点F的坐标为,且, ∴ 即PB⊥FD,故∠EFD是二面角C-PB-D的平面角. ∵,且,, ∴. ∴. 所以,二面角C-PB-D的大小为.
复制答案
考点分析:
相关试题推荐
如图四边形ABCD为梯形,AD∥BC,∠ABC=90°,求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积.

manfen5.com 满分网 查看答案
已知直线l经过点(0,-2),且垂直于直线manfen5.com 满分网
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.
查看答案
已知两条不同直线m、l,两个不同平面α、β,给出下列命题:
(1)若m⊂α,l⊂β且α∥β,则m∥l;          (2)若l⊂β,l⊥α,则α⊥β;
(3)若l∥α,则l平行于α内的所有直线;      (4)若l⊥α,m⊥β,l⊥m,则α⊥β;
(5)若l,m在平面α内的射影互相垂直,则l⊥m.
其中正确命题的序号是    (把你认为正确命题的序号都填上). 查看答案
若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离为1,则半径r的取值范围是    查看答案
正四棱锥S-ABCD的侧棱长为manfen5.com 满分网,底面边长为manfen5.com 满分网,E为SA的中点,则异面直线BE与SC所成的角为:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.