满分5 > 高中数学试题 >

已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切 (1)求...

已知动圆C过点A(-2,0),且与圆M:(x-2)2+y2=64相内切
(1)求动圆C的圆心的轨迹方程;
(2)设直线l:y=kx+m(其中k,m∈Z)与(1)所求轨迹交于不同两点B,D,与双曲线manfen5.com 满分网交于不同两点E,F,问是否存在直线l,使得向量manfen5.com 满分网,若存在,指出这样的直线有多少条?若不存在,请说明理由.
(1)由|AM|=4<R得点A(-2,0)在圆M内,设动圆C的半径为r,依题意得r=|CA|,且|CM|=R-r,|CM+|CA|=8>|AM|,由定义得圆心C的轨迹是中心在原点,以A,M两点为焦点,长轴长为8的椭圆,再根据a,b,c的关系解答即可. (2)直线l:y=kx+m与交于不同两点B,D,即x1+x2=同理得x3+x4=又因为所以(x4-x2 )+(x3-x1)=0即x1+x2=x3+x4 ,∴2km=0或又其中k,m∈Z即可求出k,m的数值. 【解析】 (1)圆M:(x-2)2+y2=64,圆心M的坐标为(2,0),半径R=8. ∵|AM|=4<R,∴点A(-2,0)在圆M内, 设动圆C的半径为r,圆心为C,依题意得r=|CA|,且|CM|=R-r, 即 ∴圆心C的轨迹是中心在原点,以A,M两点为焦点,长轴长为8的椭圆, 设其方程为(a>b>0),则a=4,c=2, ∴b2=a2-c2=12,∴所求动圆C的圆心的轨迹方程为. (2)由消去y 化简整理得:(3+4k2)x2+8kmx+4m2-48=0, 设B(x1,y1),D(x2,y2),则x1+x2=. △1=(8km)2-4(3+4k2) (4m2-48)>0.① 由消去y 化简整理得:(3-k2)x2-2kmx-m2-12=0, 设E(x3,y3),F(x4,y4),则x3+x4=. △2=(-2km)2+4(3-4k2) (m2+12)>0.② ∵,∴(x4-x2 )+(x3-x1)=0,即x1+x2=x3+x4, ∴,∴2km=0或, 解得k=0或m=0, 当k=0时,由①、②得, ∵m∈Z,∴m的值为-3,-2,-1,0,1,2,3; 当m=0时,由①、②得, ∵k∈Z,∴k=-1,0,1. ∴满足条件的直线共有9条.
复制答案
考点分析:
相关试题推荐
如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,manfen5.com 满分网,O,M,N分别为CE,AB,EM的中点.
(1)求证:OD∥平面ABC;
(2)求证:ON⊥平面ABDE;
(3)求直线CD与平面ODM所成角的正弦值.

manfen5.com 满分网 查看答案
椭圆C:manfen5.com 满分网的两个焦点为F1,F2,点P在椭圆C上,且manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心,交椭圆C于A,B两点,且A、B关于点M对称,求直线l的方程.
查看答案
已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)
求:(1)求以向量manfen5.com 满分网为一组邻边的平行四边形的面积S;
(2)若向量a分别与向量manfen5.com 满分网垂直,且|a|=manfen5.com 满分网,求向量a的坐标.
查看答案
抛物线顶点在原点,它的准线过双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(manfen5.com 满分网manfen5.com 满分网),求抛物线与双曲线方程.
查看答案
给定两个命题,P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根;如果P与Q中有且仅有一个为真命题,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.