满分5 > 高中数学试题 >

已知点(1,)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{...

已知点(1,manfen5.com 满分网)是函数f(x)=ax(a>0),且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=manfen5.com 满分网+manfen5.com 满分网(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{manfen5.com 满分网}前n项和为Tn,问Tnmanfen5.com 满分网的最小正整数n是多少?
(1)先根据点(1,)在f(x)=ax上求出a的值,从而确定函数f(x)的解析式,再由等比数列{an}的前n项和为f(n)-c求出数列{an}的公比和首项,得到数列{an}的通项公式;由数列{bn}的前n项和Sn满足Sn-Sn-1=可得到数列{ }构成一个首项为1公差为1的等差数列,进而得到数列{ }的通项公式,再由bn=Sn-Sn-1可确定{bn}的通项公式. (2)先表示出Tn再利用裂项法求得的表达式Tn,根据Tn>求得n. 【解析】 (1)由已知f(1)=a=,∴f(x)=,等比数列{an}的前n项和为f(n)-c=c, ∴a1=f(1)=-c,a2=[f(2)-c]-[f(1)-c]=-,a3=[f(3)-c]-[f(2)-c]=- 数列{an}是等比数列,应有=q,解得c=1,q=. ∴首项a1=f(1)=-c= ∴等比数列{an}的通项公式为=. (2)∵Sn-Sn-1==(n≥2) 又bn>0,>0,∴=1; ∴数列{ }构成一个首项为1,公差为1的等差数列, ∴=1+(n-1)×1=n                 ∴Sn=n2  当n=1时,b1=S1=1, 当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1 又n=1时也适合上式, ∴{bn}的通项公式bn=2n-1. (2)== ∴ == 由,得,, 故满足的最小正整数为112.
复制答案
考点分析:
相关试题推荐
要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表所示:
类    型A规格B规格C规格
第一种钢板121
第二种钢板113
每张钢板的面积,第一种为1m2,第二种为2m2,今需要A、B、C三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小?
查看答案
关于x的不等式manfen5.com 满分网与x2-3(a+1)x+2(3a+1)≤0(a∈R)的解集分别是A和B,求使A⊆B的a的取值范围.
查看答案
在△ABC中,已知AC=2,BC=3,manfen5.com 满分网
(Ⅰ)求sinB的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
等差数列{an}中,a4=10且a3,a6,a10成等比数列,求数列{an}前20项的和S20
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,其中manfen5.com 满分网的面积等于manfen5.com 满分网,求a,b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.