根据抛物线和双曲线有相同的焦点求得p和c的关系,根据AF⊥x轴可判断出|AF|的值和A的坐标,代入双曲线方程与p=2c,b2=c2-a2联立求得a和c的关系式,然后求得离心率e.
【解析】
∵抛物线的焦点和双曲线的焦点相同,
∴p=2c
∵A是它们的一个公共点,且AF垂直x轴
设A点的纵坐标大于0
∴|AF|=p,∴A( ,p)
∵点A在双曲线上
∴-=1
∵p=2c,b2=c2-a2
∴-=1
化简得:c4-6c2a2+a4=0
∴e4-6e2+1=0
∵e2>1
∴e2=3+2
∴e=1+
故答案为:1+