满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2...

manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD; (Ⅱ)建立空间直角坐标系,写出点A,B,C,P的坐标,求出向量,和平面PAB的法向量,平面PBC的法向量,求出这两个向量的夹角的余弦值即可. (Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=, 从而BD2+AD2=AB2,故BD⊥AD 又PD⊥底面ABCD,可得BD⊥PD 所以BD⊥平面PAD.故PA⊥BD (Ⅱ)如图,以D为坐标原点,AD的长为单位长, 射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则 A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1). =(-1,,0),=(0,,-1),=(-1,0,0), 设平面PAB的法向量为=(x,y,z),则 即, 因此可取=(,1,) 设平面PBC的法向量为=(x,y,z),则, 即: 可取=(0,1,),cos<>==-, 故二面角A-PB-C的余弦值为:-.
复制答案
考点分析:
相关试题推荐
已知直线l经过两条直线l1:x+2y=0与l2:3x-4y-10=0的交点,且与直线l3:5x-2y+3=0垂直,求直线l的方程.
查看答案
圆x2+y2-4x+4y+4=0截直线x-y-5=0所得的弦长等于    查看答案
椭圆manfen5.com 满分网的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为    查看答案
如图长方体中,AB=AD=2manfen5.com 满分网,CC1=manfen5.com 满分网,则二面角C1-BD-C的大小为   
manfen5.com 满分网 查看答案
已知A(a,2),B(3,7),C(-2,-9a)三点在同一直线上,则a的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.