满分5 > 高中数学试题 >

已知椭圆.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点. (I)...

已知椭圆manfen5.com 满分网.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.
(I)由题意及椭圆和圆的标准方程,利用椭圆离心率的定义和点到直线的距离公式即可求解; (II)由题意即m得取值范围分m=1时,m=-1及当m≠±1三大类求出|AB|的长度,利用直线方程与椭圆方程进行联立,利用根与系数的关系得到k与m之间关系等式,利用 【解析】 (I)由题意得a=2,b=1,所以c= ∴椭圆G的焦点坐标 离心率e=. (II)由题意知:|m|≥1, 当m=1时,切线l的方程为x=1,点A(1,)  点B(1,-) 此时|AB|=; 当m=-1时,同理可得|AB|=; 当|m|>1时,设切线l的方程为:y=k(x-m),由⇒(1+4k2)x2-8k2mx+4k2m2-4=0, 设A(x1,y1),B(x2,y2)则x1+x2=   又由l与圆圆x2+y2=1相切∴圆心到直线l的距离等于圆的半径即=1⇒m2=, 所以|AB|= ==,由于当m=±1时,|AB|=, 当m≠±1时,|AB|=,此时m∈(-∞,-1]∪[1,+∞) 又|AB|=≤2(当且仅当m=±时,|AB|=2), 所以,|AB|的最大值为2. 故|AB|的最大值为2.
复制答案
考点分析:
相关试题推荐
设椭圆C:manfen5.com 满分网过点(0,4),离心率为manfen5.com 满分网
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)的动直线被C所截线段的中点轨迹方程.
查看答案
manfen5.com 满分网自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程.
查看答案
若圆x2+y2+Dx+Ey+F=0过点(0,0),(1,1),且圆心在直线x-y-3=0上,求该圆的方程,并写出它的圆心坐标和半径.
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.
查看答案
已知直线l经过两条直线l1:x+2y=0与l2:3x-4y-10=0的交点,且与直线l3:5x-2y+3=0垂直,求直线l的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.