设函数f(x)=ax
2+bx+1(a、b∈R)(x∈R)的最小值为f(-1)=0,
(1) 求实数a、b的值;
(2) 当x∈[-2,2]时,求函数ϕ(x)=ax
2+btx+1的最大值g(t).
考点分析:
相关试题推荐
已知f(x)=log
a(1-x)(a>0,且a≠1)
(1)求f(x)的定义域;
(2)求使f(x)>0成立的x的取值范围.
查看答案
某地煤气公司规定,居民每个月使用的煤气费由基本月租费、保险费和超额费组成.每个月的保险费为3元,当每个月使用的煤气量不超过a(单位:m
3,且4≤a≤5)时,只缴纳基本月租费c元和保险费3元;如果超过这个使用量,超出的部分按计费.设某居民月使用的煤气量为x(m
3),该月的煤气费为y元,则y=f(x).若f(4)=4,f(25)=14,f(35)=19,求f(x)的解析式.
查看答案
(1)计算:
;
(2)求等式中的x的值:10
x+lg2=2000.
查看答案
已知A={x|a-1≤x≤a+3},B={x|x<-2或x>5}
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B=B,求a的取值范围.
查看答案